If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1508=x^2
We move all terms to the left:
1508-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+1508=0
a = -1; b = 0; c = +1508;
Δ = b2-4ac
Δ = 02-4·(-1)·1508
Δ = 6032
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6032}=\sqrt{16*377}=\sqrt{16}*\sqrt{377}=4\sqrt{377}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{377}}{2*-1}=\frac{0-4\sqrt{377}}{-2} =-\frac{4\sqrt{377}}{-2} =-\frac{2\sqrt{377}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{377}}{2*-1}=\frac{0+4\sqrt{377}}{-2} =\frac{4\sqrt{377}}{-2} =\frac{2\sqrt{377}}{-1} $
| a-0.7=3.2 | | x^2+30x+225=A | | .5(2n+6=5n-12-n | | 0=-16t²+80t+4 | | x+3x+6=48 | | F(x)=50+0,5X | | 1352=x^2 | | -1+8p=4+3p | | n^2-3n-25=-7 | | 0,6x²+3,6=0 | | X²+x-4692=0 | | b+b+b=105 | | 10a=-2 | | x-134=98 | | 3k+4.5=16.5 | | 2-3+3=1x-3+0 | | 3b+9+2b=49 | | 3+2x=1x | | e2=0.36 | | 9x51/4= | | -37=x+7x+3 | | 7m-9+3-2=-92 | | j−–13=19 | | m/6=12.5 | | -5(1+2x)=55 | | 2(1–5x)+4=-8 | | -5x2+8=0 | | -5x-3=2x-73 | | -60=-6x-x-4 | | 28=-2x^2-18x | | 12y-9=-33 | | 3(4x-2)=4x+6 |